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Papers, also authoritative and carefully considered products of IDA, address studies that
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that they meet the high standards expected of refereed papers in professional journals or
formal Agency reports.

Documents 0
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done in quick reaction studies, (b) to record the proceedings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed in the course of an investigation, or (e) to forward
information that is essentially unanalyzed and unevaluated. The review of IDA Documents
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Its publication does not imply endorsement by the Department of Defense or any other
Government Agency, nor should the contents be construed as reflecting the official position
of any Government Agency.
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PREFACE

The Complexity Theory CRP (9000-506) was initiated to study new developments in
Complexity Theory and report on any techniques that may be applicable to IDA tasking.
The initial tasking was to investigate up to three promising areas in Complexity Theory.
The first area involved developing new separations results for Krentel's OptP classification
[Kr87] of NP optimization problems. The second area was to examine the possible
extension of Krentel's absolute error bounds for NP approximations to relative error
bounds, while the third area involved examination of the EP theory of parallel algorithms
by Kruskal, Randolph, and Snir.

The development of new separation results would allow Krentel's absolute error bounds
on polynomial-time approximation to be extended to cover more types of NP optimization
problems, while the relative approximation results represented new work. The importance
of any error bounds was deemed important in algorithm design. By providing a method to
determine theoretical limits on the approximability, algorithm designers could spend less
time working on problem variations not likely to yield good approximations. EP theory
was deemed important since it addressed parallel efficiency and represented an alternative to
NC theory in parallel algorithm design. Of these three areas, two were addressed and one
was reported on under this CRP.

The first subtask was to seek new proofs of separation for certain OptP classes that were
not yet known to be separable, to apply these separations to show absolute approximation
bounds for classes where they did not previously apply. Several simple proofs were
discovered that showed new separations between certain classes based upon the
assumption that NP DTIME(nlog n) and other weaker results. As it turned out, these
proofs were simplifications of proofs previously discovered by Krentel and Gasarch.
Beigel [Be88] recently proved an exhaustive series of separation results that extended
Krentel's work. Because of the completeness of this recent work no further refinement of

this area was attempted under this CRP.

The second subtask was to investigate the possibility of using Query bounds in the spirit
of Gasarch and Krentel to prove relative bounds on approximations. Krentel's work

V



provided absolute accuracy bounds. Relative results yield more information, and are

generally more useful in practice. Under this CRP a new method was discovered to bound

the relative error of approximations for certain limited classes of NP-Complete optimization

problems. These results were then extended to yield - -approximation results for several

optimization problems.

The third subtask was to investigate the recently developed EP theory that

characterizes parallel algorithms by their efficiency. Time did not permit investigation of

this area.

This paper was reviewed extensively throughout its life cycle by members of the
Institute for Defense Analyses review team: Dr. Eric Roskos, Dr. Cy Ardoin, Dr. Michael
Kappel, Mr. Steve Edwards, Mr. Jim Baldo, and Mr. Terry Mayfield.
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1 INTRODUCTION

This paper presents a new method for determining lower bounds on the relative accuracy

attainable for polynomial-time approximations to certain restricted types of NP-Complete

optimization problems herein referred to as 1) bounded optimizations, 2) NP constrained

optimizations, and 3) A-optimizations. The method makes use of query analyses with

Oracle Turing machines, with the goal to develop a consistent approach for determining

lower bounds for accuracy in poly-time approximations. The methods presently allow k-

approximation results to be shown for these restricted NP optimization problems and

allows _L -approximation results to be extended to unrestricted problems. The goal is tonto

find methods that allow k-approximation and E-approximation results to be extended to

unrestricted problems.

The ability to show lower bounds on error has ramifications in algorithm design. Since

no exact polynomial-time solutions are known for any NP-Complete optimization

problems, algorithm designers must often resort to polynomial-time approximation

algorithms for these problems. This process often involves inventing variations of the

underlying problem by simplification, substitutions, or other methods in an attempt to find

a problem that can easily be approximated. Having theoretical tools to show lower bounds

on error for some of these problem variations would allow the algorithm designer to

quickly discard approaches that cannot be approximated to the required degree of accuracy.

The first class of problem studied in this paper is the bounded optimization problem.

This is a NP optimization problem where the number of elements of the witness that may
1



participate in the optimization is bounded. As an example, consider BOUNDED CLIQUE.

This problem consists of a graph G, and a set of distinguished vertices U. We ask how 0

many of the distinguished vertices can be found in any one clique of size k. Since the

optimal solution is never more than IUI, the optimization is bounded by how large U may

be as a function of the vertex set V. Although this problem class is contrived to aid in the 0

query analyses, it yields some problems that are interesting in their own right.

The second type of restricted optimization is the NP constrained optimization. In this

problem we are given two instances of an NP-Complete problem I, and 12. 11 is used to

constrain the legal witnesses of 12, and 12 is the optimization problem. An example of this

type of problem is C MAX SAT. This problem consists of two boolean formulas cpi, and

92 over variables X. The goal is to output the maximum number of clauses in cP2 that can

be simultaneously satisfied by a witness that completely satisfies (pl.

The third type of optimization is the A-optimization. In this problem we are given two

instances of a problem 11, and 12. The goal is then to compute the optimization on both

instances and output their difference. As an example, consider A-CLIQUE. In this

problem we are given two graphs G1, and G2. Let k1 be the maximal clique in G1 , and k2

be the maximal clique in G2. We wish to know how much larger k2 is than k1.

The main technique utilized in this paper is oracle query analysis. It is used to establish 0

the number of queries required to solve a problem on a pNo Oracle Turing machine. The

query requirements are based on some complexity theoretic assumption such as P*NP, or

NP*R. That is, the problem will require at least the number of queries specified as long as •

the complexity theoretic assumption holds. The initial query requirements are established

by proofs that directly show the assumption is violated if a base problem can be solved in

fewer than the required number of queries. Metric reductions are then used to propagate •

2



query requirements to other problems. The reductions are constructed to allow the new

query requirements to be determined from the query requirements of the source problem.

Once the query requirements have been established, they can be used to develop lower

bounds on the accuracy of polynomial-time approximations assuming the complexity

theoretic assumption holds. In this paper k-approximation results are established for

several restricted problems. The k-approximation results can be extended to

- -approximation results for several unrestricted optimizations problems including

CLIQUE, and MAXIMUM INDEPENDENT SET. Extensions to k-approximation and e-

approximations have met with limited success since all unrestricted k-approximation results

so far found can be proven by other means.

The remainder of the paper is organized as follows. Section 2 presents the definitions

required to develop query requirements and presents two approximation bound proofs.

Section 3 presents query requirements for a base problem LEX and uses them to show

examples of query requirement proofs for problems in each of the three restricted

optimization classes. Section 4 utilizes these results to show approximation bounds for

restricted and unrestricted NP optimization problems.
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2 APPROXIMATION BOUNDS FROM QUERY BOUNDS

This section establishes the tools required to show k-approximation bounds for NP

optimization problems based upon the number of queries required to solve them on a pNP

Oracle Turing Machine (OTM). Two theorems are then presented that use query bounds to

show lower bounds on relative and absolute error. The first theorem is a modified version

of Krentel's theorem for absolute approximation bounds and allows absolute

approximation bounds to be expressed in terms of natural problem size measures. A new

theorem is then introduced that uses precise query bounds and the number of bits required

to express the solution to get relative approximation bounds.

2.1 DEFINITIONS

In this section we introduce the concept of a "natural" measure for bounding queries in

an NPC optimization problem. These concepts are used to show theorems for bounding

absolute and relative errors of polynomial time approximations. The natural measures will

be 1) within a polynomial of any reasonable encoding, 2) natural for bounding the queries

required unde, the intuitive binary search using NP queries, and 3) natural for bounding

the size of the solution in bits. Examples include the number of variables for LEX-SAT

and other SAT witness problems, or the number of vertices for COLORING, CLIQUE,

and other vertex counting graph problems, etc. The concept of a "natural" query measure

and notations are formally introduced below.

DEFINITION 2.1.1 Natural measure, A natural measure, m:Fl'--N, is function that

relates a "size" to some instance of problem I' in a natural and standard

way. For example, mrl(G) = IVI is a natural measure for CHROMATIC

NUMBER({V,E})). This will be also be abbreviated as "n-measure".

5



NOTATION 2.1.2 When dealing with known problem n-measures, the actual function

will be explicitly written. For example, for graph problems where the

queries are measured in terms of the size of the vertex set we will use IVI

instead of mn(G). When discussing unspecified problems with

unspecified n-measures we will use the symbol m. Sometimes this will

also be written as m(x) to emphasize that the n-measure value is a function

of the input instance.

DEFINITION 2.1.3 Query requirement, Ql:mI(I)-+N, is function that describes the

number of queries required to solve an instance I of problem fl on pN

machine. The query requirements are relative to some complexity 0

theoretic premise, such as P*NP, or NP*RP, etc. Sometimes the query

requirements for a specific problem will be written with the problem name

as the subscript. For example, QCLIQ is the query requirement for the 0

problem CLIQUE.

NOTATION 2.1.4 When dealing with problems with known query requirements as a •

function of their n-measure, we will write the function explicitly. For

example, a logarithmic query requirement for Vertex Cover would be

written as logIVI. When dealing with unspecified query bounds, the

symbol "Q(m)" will be used.

DEFINITION 2.15 k-approximation, Problem 1' has a polynomial-time k-
0

approximation if there exists a polynomial-time algorithm that guarantees

ApproxI1(x) - optI'(x) : k(optl(x)).

optl(x) - •

6



If k(z) is a constant function, the approximation result can also be expressed in terms of

overapproximations and underapproximations. An overapproximation approaches a

solution from above, while an underapproximation approaches a solution from below. A

k-approximation is one that can guarantee (Vx) Approx(x) < (k+l)opt(x) for

overapproximations, and (Vx) Approx(x) > (k-i)opt(x) for underapproximations. Both

notations will be used in this paper.

2.2 ERROR BOUND THEOREMS

The theorems presented in this section establish lower bounds on the absolute and

relative accuracy attainable for polynomial time approximations to NP-Complete

optimization problems assuming query requirements Q(m(x)). Since the query requirement

is conditional on some complexity theoretic assumption such as P*NP, NP*RP, etc; this

allows lower bounds to be established for various complexity theoretic assumptions.

These theorems are stated without reference to this condition to allow them to be more

generally applicable. In Section 3 these theorems will be applied assuming P*NP.

Theorem 2.1 below is an adaptation of Krentel's OptP approximation results showing

that the absolute accuracy attainable by a polynomial time approximation is bounded by

2 Q(,(x))-1 . Theorems 2.2 and 2.3 impose a relation between query requirements and output

bits required to bound the relative accuracy of polynomial-time approximations to bounded

as well. Corollaries 2.4 and 2.5 give k-approximation bounds when the difference

between query requirements and bits required to express the solution is a constant.

THEOREM 2.2.1 If 1 requires Q(m) queries then no polynomial-time approximation can

guarantee IlApprox(x)-opt(x)I : 2Q(mn(x))-l . (NOTE: lixil is absolute

value)

7



PROOF If 1" requires Q(m) queries then by definition it cannot be calculated in

polynomial time with Q(m)- 1 queries unless the associated premise is 0

false. If rI can be approximated to within 2Q(m)-1 in polynomial time,

then an OTM algorithm can be built that violates the query requirement

as follows. Assume 1 can be approximated to within 2 Q(m)1l in 0

polynomial time. Run the polynomial time approximation so opt(x) is

known to within 2Q(,(x))-1. Then run a deterministic binary search with

an NPC oracle to resolve the last Q(m)-I bits and solve 1l in Q(m)-l 1

queries. Therefore, any polynomial-time approximation must have

IlApprox(x)-opt(x)I -< 2Q(m)-l infinitely often.0

We now use the absolute accuracy bound of Theorem 2.1 to show a new result for

relative approximation bounds as well. This result can be used to show that for certain

problems, no poly-time approximations can guarantee (Vx)[Approx(x) < keopt(x)] below

certain cut-off values of k. Since Theorem 2.1 only gives us information about the

absolute value of the error, IlApprox(x)-opt(x)jU, we need to specify if the approximation

approaches the optimum from above or below. Most relative error assessments deal with

approximations approaching from above, so Theorem 2.2 deals with this case. A similar

result for approximations approaching from below is shown in Theorem 2.3.

It should be noted that although these theorems can bound the accuracy attainable by

such approximations, they say nothing about the existence of such approximations.

Existence is proven by exhibiting an algorithm.

8



THEOREM 2.2.2 If problem l requries Q(m) queries and opt(x) never requires more than

Q'(m) bits, then no poly-time approximation for I' approaching from

above can guarantee (Vx) Approx(x) < ( 1 +2 Q(m) - Q'(m) - 1]opt(x).

PROOF From Theorem 2.1 we know that IlApprox(x)-opt(x)I = Q( 2Q(m)W-). In

what follows IxI is the length of x in bits. Let opt(x) be such that

(Vx)[lopt(x)l < Q'(m(x))], so opt(x) < 2Q(m(x)) for all inputs of n-

measure m. We can then construct the ratio

IjApprox(x) - opt(x)I > m = 2Q*m-Q(m)-I infinitely often
opt(x) 2QI(m)

Since the numerator is a lower bound and the denominator is an upper

bound, the inequality holds. Recalling that Approx(x) > opt(x) and

solving to get Approx(x) and opt(x) on different sides, we get

Approx(x) t ( 1+2 )Q(M ) - l'Ipt(x) infiitely often. 0

THEOREM 2.2.3 If problem IT requries Q(m) queries and opt(x) never requires more than

Q'(m) bits, then no poly-time approximation for 1H approaching from

below can guarantee (Vx) Approx(x) > (12 Q(M" - Q(m) - I)opt(x).

PROOF Using reasoning similar to Theorem 2.2 and recalling that

Approx(x) < opt(x), we get

Approx(x)5 1-2Q(M) - Q(m) "  l ppt(x) infinitely often 0

9



COROLLARY 2.2.4 If the query requirements and optimization constraint for problem I

differ by an additive constant r, then no poly-time approximation for 1"

approaching from above can guarantee (Vx)[Approx(x) < k.opt(x)] for

(I+ 2'+'
k5 1 IC+1 )

PROOF By Theorem 2.2. 0

COROLLARY 2.2.5 If the query requirements and optimization constraint for problem 1

differ by an additive constant c., then no poly-time approximation for

n approaching from below can guarantee (Vx)[Approx(x) > k.opt(x)]

for

K2'+1 1

k 2:

PROOF By Theorem 2.3. 0

0
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3 QUERY BOUNDS FOR RESTRICTED NP

OPTIMIZATION PROBLEMS

This section presents precise query bounds for several restricted NP optimization

problems in terms of "natural" problem size measures,. The query bounds Q(m) describe

the number of NP queries required to solve the problem on a pNP oracle machine, and are

constructed assuming P*NP. That is, no pNP oracle machine can guarantee a solution

with fewer than Q(m) queries unless P=NP. Additionally, Q(m) will be described as a

function of some natural measure of the input problem size such as variables in a boolean

formula, vertices in a graph, etc. The proofs follow in two steps. First, query

requirements are established for a base problem. Second, standard metric reductions are

then used to propagate the query bounds to other problems.

The query bound proofs for the base problem make use of the work of Krentel [Kr87],

and improvements made by Beigel [Be88], for establishing query bounds for the base

problem C2-LEX(1.) 10g n- The query requirements for the base problem C2-LEX(1.E)og n

is established in two steps. First, the problem is shown to be NP-Hard by showing a

reduction to the NP version C2-SAT. C2 -LEX(1 .)10 g n is then shown to require (1-E)log n

queries unless P=NP.

Once the base problem is established, metric reductions are exhibited to establish query

requirements for several restricted NP optimization problems. Reductions are based partly

on the OptP proofs of Gasarch and Pearlman [GP88], and appropriate modifications of

NP proofs in the literature. The query bound proofs work by carefully examining

11



reductions that preserve the number of queries required for solution on a pNP oracle

machine. These examinations allow the optimization constraints to be carefully measured 0

in terms of the natural problem metrics. Care is also taken to ensure that the optimization

constraints match the query requirements so that the theorems of Section 2 can be used to

obtain bounds on relative error. Since most of these reductions are adaptations of well- 0

known reductions in the literature, only a brief sketch is presented for several reductions.

3.1 NAMING CONVENTION 0

The naming convention for problems in this section will be to place the optimization

bound as a subscript to the problem. Thus CLIQUEf(.) is the CLIQUE problem with an

optimization bound of f(n). 0

3.2 PROVING QUERY REQUIREMENTS FOR C2 -LEX(.E)Iog,

Ck-LEX (l-E)Iog n is a variation of the FP problem LEXn) introduced by Krentel. The

only additional restriction is that the number of clauses is at most IXIk where IXJ is the

number of variables. Ck-LEXf(n) can be proven to require f(n) queries for certain f(n) by

the methods of Krentel and Beigel. The additional restriction on the number of clauses is

required in the reduction to VAR SAT. In this paper we will use C2-LEX(_E)Iog 1 and

prove it requires (1-e)log n queries by Beigel's approach. A formal definition of LEXg(n) •

and Ck-LEXg(n) follows.

DEFINITION 3.2.1 LEXg(n) Let q be a boolean formula in CNF format with an

ordered set of distinguished variables X = {u0 , ... uf(n)} where n is the

total number of variables, and let o be a witness that satisfies p. Output

1

12

0



the maximum value of f(w) over any witness co, where f(o)) is defined

as.

f(o)) = max X 2
IIXjeX

DEFINITION 3.2.2 C 2 -LEXg(n), Let (p be a boolean formula in CNF format with

with at most IVi2 clauses where IVI =n is the number of variables in 9P,

and a set X = {u0 ,...,uf(n)) of distinguished variables. Let co be a

witness that satisfies (p. Output the maximum of f(wo) over any witness

co, where f(cw) is defined as above.

The proof of query requirements proceeds by first showing that a formula in Ck-format is

NP-Complete for any k>1. It then follows that C2-LEX(le)10g n will be an NP-Complete

optimization problem. Beigel's proof will be restated with the appropriate modifications to

prove that C2-LEX(..)og n requires (l-e)log n queries for EX) unless P=NP.

3.2.1 Ck-SAT is NP-Complete

Ck-SAT is a variation of SAT where the number of clauses is at most IXIk and JXI is the

number of variables. Ck-SAT is easily seen to be in NP by guessing the satisfying

assignment. Ck-SAT can also be shown to be NP-Complete for all k>l by examination of

Cooke's proof for SATe NP-Complete.

THEOREM3.2.1.1 SAT 5P Ck-SAT

PROOF Cooke's proof produces a boolean formula in CP-SAT for some p since

the number of clauses is polynomial in the input tape. Therefore we

13



only need to show that Vk < p, p > 1, CP-SAT Ck-SAT. Let qi be an

instance of CP-SAT with variables X, IXI = n, and [kPl :nP. Create a

new formula V by padding ip with a single disjunction of variables

{u,u 2, ... ,uj}. The number of variables will be adjusted to bring Ck-

format into CP-format. 0

We get V = qPA(u1 , u2,. . .,uj). We now want INI < Nk, where N=j+n is

the number of variables in 4. Since VJ = [kPI + 1 = nP+ 1, we want nP+ 1
p

(n+j)k. Solving for j we get j > i + 1 - n. So let j = n k. This is

a polynomial reduction since we are adding only a polynomial number

of variables.0

3.2.2 C 2-LEX(l.)Ieg . Requires (1-E)Iog n Queries

From Section 3.1 we saw that C2-LEX(.e)IM a is an NP-Complete optimization problem

since C2 -SAT is NP-Complete. We now show that C2 -LEX(.E)og n requires (l-E)log n

queries. The following sketch is a modification of the proof that appears in Krentel [Kr87]

and improved by Beigel [Be88]. It shows that if (9,lc)e C2 -LEX(I_E)Iog a can be solved

with less than (I-e)log n queries, then (pe SAT can be solved in polynomial time and

P=NP.

The proof works by assuming an OTM Mg exists to solve (-,)e C2 -LEX(I_.)Iog n in

((1-c)log n) - 1 queries. The machine Mg is then used to build a new algorithm to solve

pe SAT in polynomial time. The new algorithm works by simulating Mg on variations of •

(p until enough information is extracted to construct a witness to 4p. The witness is then

tested to see if 4pe SAT. Beigel shows that the information extracting rounds can be
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performed in polynomial time so SATe P. The only modification to the proof is to ensure

that it will work for formulas in C format. This is established by the following lemma.

LEMMA 32.2.1 Let (p be a boolean formula in C2-format with n variables. Let cp'=(PAIV,

be a new formula formed by augmenting the original formula (p by y

where 4 has alog(n)2al0 g(n) clauses and alog(n) new variables. If a.<.l

then 9p' is also in C2 format.

PROOF Since q is in C2 format,.we know that Icpj S IX12. Let IXI = n. We will

add new variables so IX' = n+alog(n). The C2-format then requires

j(P)' 5 IX',2 -- 2 + 2nalog n + (alog n)2 .

To get q' we are adding alog(n)2:"o g(n) new clauses so we get
19' 11 (x ogn)alog n 2

kp'I = <+ (a log n)2 n + analog n.

So for cp' to be in C 2 -format we must have

n + analog n < 2 + 2nlog n + (a log n)2

which surely holds for a < 1. 0

We now present a sketch of Beigel's proof. The only modification is to ensure that

Beigel's proof can handle the C2 formatting restriction.

THEOREM3.2.22 C2-LEX(I-C)Iog n requires (1-E)log n queries unless P=NP.

PROOF Assume that Mg is an OTM that solves an instance of C2-LEX(_e) 0g n

in ((I-e)log n) - 1 queries, as long as the input formula is in C2 format.

Simulate the action of Mg on 9 for all queries. We can do this since

there are no more than O(log(n)) queries. Call the queries variables YI,
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Y2 ...Y(-)log -I- We now have the lowest (l-E)log n variables,

{XIX 2 , ... ,X(1-)log n}, of a satisfying assignment as a function of

{Y1,Y2,--',Y(1-)1og n-1)- Write the functional dependency between the x

and y variables as a truth table with 2(l"O log n-i columns and (1-E)log n

rows. The truth table can now be written as a boolean formula 4f in

CNF format with ((1-e)log n)2(l-)' O g n-i < nlog(n) clauses.

We now make a new formula p' = 9A'V, with variables {Yl-.,Y(-

clog n-i' x1,.-- .n}. Note that by lemma 3.2.2.1 above 9p' is guaranteed

to be in C2-format. Rename the variables; {Yl,..',Y(1-e)og n-i, X(i-E)log

n+l,'",Xn, x 1,.'",x(i-)Olog n}" The variables {x1 ,... ,x(s)jlog n} at the

end of the list are now the dependent variables, and all others are the

independent variables. The new formula is now processed repeatedly

using the same simulation of Mg until all of the xi variables are known

in terms of y variables. We now try all assignments to the y variables to

get the values of the x variables. If any of them is a satisfying

assignment then 9p is satisfyable, otherwise it is not.

Krentel and Beigel show that the above process can be accomplished

in polynomial time if Mg exists. Thus if we can solve C2-LEXo_)Iog n

in fewer than (1-e)log n queries then P=NP.0

3.3 QUERY REQUIREMENTS FOR BOUNDED OPTIMIZATIONS

This section establishes query bounds for bounded optimizations. These are problems in

which the number of elements in the problem that are allowed to participate in the

optimization is bounded as some function of the input size. The problems in this section 0
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are proven to have specific query bounds Q(m) unless P=NP. That is, no pNP oracle

machine can guarantee a solution with fewer than Q(m) queries unless P=NP.

All problems are reduced to a base problem called C2-VAR SAT(Nr2)(-c). C2-VAR

SATN/2 )(1-e). is an instance of SAT where a set of (N/2)( l E) of the variables are "marked",

and the number of clauses is at most quadratic in the number of variables. The problem is

to output the maximum number of marked variables that are true in any satisfying

assignment. C2-VAR SAT(N/ 2)(1-.) is proved to require (1-c)log(N/2) queries unless P=NP

by reduction to C2-LEX(IC)Ig n from Section 2. Several other problems are then reduced

to this base problem to obtain query bounds.

3.3. 1 Bounded Optimization Problems

A bounded optimization problem is stated in three parts; c, f, and M. The first part, x,

D is an NP problem definition including the requirements for a witness, co. The second part

is the optimization function f(o) over the witnesses. The third part, M, is the

optimization constraint and bounds the maximum value that the optimized problem may

take as a function of the input problem size. This constraint may restrict the number of

elements in a problem instance that can participate in the optimization.

As an example consider a whimsical version of the Travelling Salesman Problem. This

problem is constructed by requiring the TSP route to be a Hamiltonian cycle that maximizes

the weights from some preferred edge set. That is, we make a TSP route between all

cities, but wish the route to use certain preferred city to city flights when possible. This

could be called the Frequent Flyer TSP since it seeks to maximize mileage on certain

selected legs of the excursion, presumably those that have been designated as "bonus

0 flights" by the airline. Let the preferred edge set be P, this problem is then expressed as
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ft(O)FFTSP: max. -w(ei)

c.ePC)

MFFTrsp: Iw(e i) < 3 6 where IVI is the total number of vertices.
C.E P

Notice that in MF TSP above, the bound limits the number of edges that participate in the

optimization since the sum of preferred edge weights must be less than the total number of

edges in any Hamiltonian cycle through the graph. It is also a bound on the magnitude of

any optimal solution.

3.3.2 Base Problem: C2-VAR SAT(N/ 2)(1-C)

The base problem for all CNPO reductions needs to be able to "count" constraints that

are violated. This is accomplished in a variation of SAT by counting true variables from a

prespecified set of "marked" variables. As with all NPCO problems, the size of the

"marked" set is a function of the problem size. A formal definition of C2-VAR SAT0 N2)(1-

C) follows.

DEFINITION 3.3.2.1 C2-VAR SAT(N2)(1-)

k-VAR SAT: A boolean formula (p in CNF format with at most IV12 clauses where

lVI is the number of variables in T. X = {u0 , uf(n)I is an ordered set of
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distinguished variables where n is the total number of variables. A witness

co is a satisfying assignment to (p.

f(()))CAR SAT: m~ax.D 1 (x,) where 1 (x) is the constant function outputting 1.
X. true in (o

Ixie X

MC-VAR SAT: opt < (N/2)(1"F) where N is the total number of variables.

We can now show that C2 -VAR SAT(N/2)(I-e) requires (1-e)log(N/2) queries unless

P=NP by a reduction to C2-LEX(I-)log n- Notice that in the LEX problem, the subscript

refers to the length of the output bit vector in terms of the number of variables in the LEX

instance. In the VAR SAT problem, the subscript is the size of the "marked" variable set

in terms of the number of variables in the VAR SAT instance. The order difference in these

functions is due to the fact that the VAR SAT instance only counts elements from the set,

while the LEX instance effectively weights the elements by 2' before counting them.

3.3.2.1 Construction

The proof proceeds by exhibiting a construction of a C2-VAR SAT(N,2),1-) instance AV

from an instance (p of C2-LEX(1 .4 )Iog n. The construction will be a collection of boolean

formulas over new variables from the sets Z, U, C, and the original LEX instance. The Z

variables are used to simulate the 2' weighted X variables from LEX. The U and M

variables are unmarked and marked dummy variables that are included only to make the

mathematical analysis easier. The Z variables will be used to construct the formula a,

which ensures that a subset of Z will all be true for each distinguished variable xi from

LEX. The dummy variables will be collected into a single clause 8.
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Using the procedure below a new formula V is created consisting of a concatenation of

the formulas 4p, a, and S. After the construction is complete, the new VAR SAT instance

is shown to be in C2-format if the original LEX instance was. The optimal solution to LEX

is then shown to be obtinable from the optimal solution to VAR SAT, completing the

reduction. 0

1) Construction of c. For each of the distinguished variables {x2,. . .,X(1.,)og } in

(p create a clause using i new variables Z = {zi, 1,...,Zi'i} where i is the subscript of

the distinguished variable xi . The clauses will have the form

Ci= [ ( X i V -Zi, )A(X i V -Zi, 2 )A...A(X i V "Zi,2i1 ) ] A [ ( ~ X i V -Z, 1)A...A(-Xi V -Z

The new formula a will then be

i=2

2) Construction of 8. 8 consists of a single disjunction of all of the dummy

variables; M={ml,m 2 }, and U = { u1,...,un,(i-c)}. The new formula will then be

8 =(m 1 vm 2 vu 1 v ... v un-n(I-9)).

3) Let V = (P A A 6, where p is the original instance of C2-LEX(I.E)Iog n. Mark 0

only the variables in ZuMu{x 1}.O

We now need to show that xV is indeed in C2 format, assuming that (p was. 0

CLAIM 3.3.1.1.1 The instance V of C2-VAR SAT(N/2)(-e) is in C2-format if the input

instance p is in C2-format.
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PROOF We first need to count up the total number of clauses and variables in V,

so we first calculate IZI. For each xi we create 2 '-1 new z variables

which gives us an expression for IZI as

(1-F)log n (1-c)log n -1

Izi=- 2i- ' =-----2 2' l og n- 2- n' - 2 new z variables
i=2 j-1

The total number of variables can now be calculated as

lXi = IZI+IUI+IMI+IXI = 21Xl- 2n

For each xi we create 2' new clauses.which gives us an expression for

the total number of new clauses in o as

(1-E)log n
S=X2i 2 (l-)og n + 1. 4  2(1c) 4

i=2

Since 181 = 1 we have the total number of clauses as

I'I = ITI + n2( 1"e) _ 3

The C2 formatting restriction on (p ensures that Iqpl < n2 , and the C2

formatting restriction on 4t requires that I'v < IX'12  4n2 . Recalling that

(1-e) < 1 we get

I4rl<n2+ n2 (-)3<2n2<4n2 IXI

So V is in C2 format.0
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From the analysis above we can also calculate the number of marked variables in terms

of the total number of variables in V. Let X' be the complete variable set, and ]X'] = N. 0

The number of "marked" variables is then (N/2)(10 ). This expression is placed in the

subscript of C2-VAR SATNr,)(1-e). The only task remaining is to show that the solution to

C2LEX(1 )og n can be obtained from the solution to C2-VAR SAT(Na2)1-c) in polynomial 0

time.

CLAIM 3.3.1.1.2 The optimal solution to C2-LEX(.E)10g . can be obtained from the 6

optimal solution to C2-VAR SAT(, 2 )(1-) as, optLEX= OPtVAR SAT -2.

PROOF In ii, the only variables marked will be in ZuMu{x 1}. The 0

construction of a requires all of the zj variables to be true iff the

corresponding xi is true. The number of zi variables in qi for each xi

variable in (p is the exact weight of xi in LEX, so the number of zi and

x, variables true will be exactly the output from LEX. The construction

of 8 requires that all variables in M be true in the optimal solution, so

they are subtracted off. 0

3.3.2.2 C 2 -VAR SAT(N/2)(i-e) Requires (1.e)iog(N/2) Queries

THEOREM3.3.1.2.1 C2-VAR SAT(N/2)(1-) requires (1-c)log(N/2) queries unless P=NP. •

PROOF From the reduction we see that the number of variables in iF is JX'J = N

= 2n, where n is the number of variables in (p, the instance of C2-

LEX(l-e)log n. If we can solve N' in less than (1-E)log(N/2) queries then

we could solve (p in less than (1-c)log n queries by converting it to V

0
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using the reduction procedure. This violates Theorem 3.2.2.2 so C2-

VAR SAT(N/2 )(1-4) requires (1-e)log(N/2) queries unless P=NP.0

3.3.3 WEIGHTED VAR SAT: WV SAT

WV sat is a generalization of C2-VAR SAT where the distinguished variables may carry

weights > 1. The only restriction is that the total sum of the weights not exceed (N/2)('E ).

DEFINITION 3.3.2.1 WV SAT(N/2)(i-c)

rwV SAT: A boolean formula (p in CNF format with at most IV12 clauses where lVi is

the number of variables in q). X = {x 0 , Xf(N)} is a set of distinguished

variables with weights w(xi) and where N is the total number of variables.

A witness o is a satisfying assignment to (p.

f((O)WV SAT: max. I w(x i )

x. true in o)tx.EX

MWVSAT: Lw(x i) < N
1e 2

C2 -VAR SAT is a restriction of WV SAT where the formula is required to be in C2-

format and all weights for the distinguished variables are 1. It then follows that WV SAT

requires (l-e)log(N/2) queries unless P=NP.
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3.3.4 WEIGHTED VERTEX COVER: WVC w

(T

WVC is a weakening of the standard minimal vertex cover problem MIN VC. In WVC

we are given a graph G and permitted to weight some subset of the vertices. We are

seeking the minimum weighted vertex cover for G. That is we seek a vertex cover ofr G

that includes the minimum total weight from the weighted elements. It is a weakening of

MIN VC since the total weight of all distinguished vertices is not sufficient to allow the

MIN VC problem to be calculated by weighting all vertices by 1.

7rwvc: A graph G=(VE), a set of distinguished vertices U with weighting

function w : U -+ N, and maximum vertex cover size k. A witness (0 is a

vertex cover on G that is of size < k.

f(O))Wv c: min. 7,w(ui)

The reduction follows in two stages. The first is a reduction from C2-VAR SAT to a

restricted version of WVC where all weights on distinguished vertices are 1. The query

requirement from this restriction then follows.
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The reduction from C2-VAR SAT follows the standard reduction to 3-SAT in [GJ79]

with two modifications. The first is that the vertices in each clause cluster are allowed to

number up to lX, one for each of IX possible vars in the clause. So the cluster of vertices

for each clause is then a complete graph on JC vertices where ICI is the number of variables

in the clause. The second modification is that the marked variables from C2-VAR SAT

now allow a var vertex to be similarly marked. The construction follows.

CONSTRUCTION

1) For each variable xi in 4p create two vertices v, and -v i. Place an edge between
them.

2) For each clause cj in (p create a clique of size lcjI.

3) For every variable in clause c: connect an edge to the appropriate vi and -vi.vertex
dependening upon which form of the literal appears in cj.

4) For each distinguished variable xi in (p mark the appropriate -vi vertex.

5) Let k = lX + ,Icil - [191 where JX is the number of variables in (p and 191[ is the
cie 4P

number of clauses.

In the construction above, the edges radiating out from the clause cluster are connected to

other variable representing vertices. These are referred to as spokes. The edges between

elements of a single cluster are referred to as internal edges. The edges between (vi ,-v i)

pairs are also internal edges.

25



Since the marked variables are mapped directly to marked vertices it is easy to see that the

maximum number of marked variables in a witness to qp will be IUI - the minimum number

of marked vertices in a witness to G. We now only need to show that the construction

ensures that the associated formula 4p is satisfied iff there is a vertex cover of the specified

size. This is established in the following lemma.

LEMMA3.3.2.1 In the above construction.there is a vertex cover of size < k €* (p is

satisfiable.

PROOFc= Assume 4p is satisfiable. For every variable that is true place the v vertex

into the cover, and for every variable that is false place the -v vertex

into the cover. This uses a total of JXI vertices. Since 4p is satisfied by

the assignment each clause has at least one variable that is true in that

clause. Let ui be a literal that supports each clause ci. For each clause

cluster ci, accept all vertices except ui into the vertex cover. Each

clause cluster will then have all internal edges covered and the cover is

now of size k. 0

Now, for each clause cluster ci all spokes are covered except those

connected to the supporting literal ui. But since the supporting literals

are true by definition they will also be in the cover and the remaining

spokes are covered.

PROOF- All internal edges in each vi ,-vi.pair must be covered so any vertex

cover must contain at least one vertex in each pair. Thus there are at

least 1XI (vi ,-v i) vertices in the cover. Also, each clause cluster must

have all internal edges covered. It can be proven by induction that a k-
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clique has a minimum vertex cover of k-I so at least Icji -I vertices from

each cluster must be included. Thus there are at least k vertices in the

vertex cover of G. Since k is the size limit there are exactly k vertices in

the vertex cover and they are distributed as above.

Since each cluster has Icil -1 vertices, each cluster has exactly one spoke

it cannot cover. But since the vertex cover exists this spoke must have

been picked up by the (vi ,~vi) vertex at the other end of the spoke. Let

these (vi ,~vi) vertices be the true variables. Since exactly one of each

(vi,~vi) pair is in the cover, they form a proper boolean assignment.

Thus there is a boolean assignment where all clauses have at least one

supporting true literal.

In the construction the total number of vertices N will satisfy N < 2n+n3  2n3, where n

is the number of vars in C2-VAR SAT. The total number of marked vertices is t(n/2) (1- ) .

We must rescale the optimization constraint and query requirement from (n/2) ( 'V) to
1-E

N'J ~ where N is the total number of vertices in WVC.

3.3.5 WEIGHTED MAX INDEPENDENT SET: WMIS v

(T

WMIS is a weakening of MAX INDEPENDENT SET because the optimization

constraint is insufficient to allow all vertices to be counted on an independent set. The

problem consists of, a graph G=(VE), a minimum independent set size m, and a set of
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preferred vertices U. It asks for a maximally weighted subset of U that lies on an

independent set over V. A formal definition follows.

r wMwS: A graph G=(V,E), a set of distinguished vertices U with weighting

function w : U -* N, and a minimum independent set size m. A witness co

is an independent set on G of size > m.

f(Wo)WMIS: max.) I w(u i)

U. E 0)

uieU

MWU: Wui)!U IV)

The reduction follows simply from WVC. For any graph G let W V be a vertex cover

of G. Then V-W will be an independent set of G. If W is the vertex cover that minimizes

WVC then V-W will be the independent set that maximizes WMIS for the same weighting

function and set of distinguished vertices U. The minimum independent set size is set as m

= IVI - k, where k is the maximum vertex cover size in WVC, and IVI is the total number

of vertices in G.
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3.3.6 WEIGHTED CLIQUE: WCLIQ v

WCLIQ is a weakened generalization of the MAX CLIQ problem since the optimization

constraint is insufficient to allow the maximum clique to be found by weighting all vertices

by 1. It asks for the maximally weighted subset of the distinguished vertices that lie on any

clique in the graph G.

7rw CLQ: A graph G=(VE), a set of distinguished vertices U with weighting

function w : U -+ N, and a minimum clique size m. A witness o is a

clique on G of size m or greater.

f(C)w Q: max. I w(ui)
Uie (0

uieU

Mw C1Q: Xw(ui)S (6)

The reduction follows exactly as for WVC using the complement of the graph Gc.
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3.3.7 FREQUENT FLYER: FF

The FF problem consists of a weighted directed graph and subset P of the edges that are 0

designated as preferred. The problem is to find the directed Hamiltonian cycle through the

graph that includes the maximum weight from the set of preferred vertices. The total path

length is of no concern. This problem is actually a Hamiltonian cycle problem, instead of

a more complicated Travelling Salesperson problem since the total path length is not

bounded. A formal definition follows.

XFF: A weighted graph G=(V,E), and a set of preferred edges P. A witness co

is a Hamiltionian cycle through G.

I

f(co)F: max, I w(ei)
C 60eC

eieP 0

1-C

e.ep
I

The reduction follows in two parts. The first part is a reduction from C2-VAR SAT to a 0

restricted FF problem where all preferred edges get weight 1. The reduction ftom the

restricted problem then follows.

30
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The reduction from C2-VAR SAT follows the construction for reduction from 3-SAT in

[AHU79] with the obvious generalization to allow clauses of any length. The preferred

edges are chosen as the first cross edge in each H-ladder in the Aho, Hopcroft, and

Ullman's construction for any variable that is marked. The total number of vertices N will

then satisfy N < 2n+n3 < 2n3 , where n is the number of variables in C2-VAR SAT. The

total number of preferred edges is then (n/2)(1" ). We then rescale the optimization
1-E

constraint and query requirement from (n/2)(' " ) to where N is the total number of

vertices in the graph.

3.4 CONSTRAINED OPTIMIZATIONS

Constrained optimizations are actually two NP problems 1"I and 1712 bound together.

The first problem I1, is a NP-Complete set problem and constrains the variables in the

0 second problem. The second problem n2 is an NP-Complete optimization problem. There

is generally a relation between lnI and 1"2 that limits the size of 1"2 as a function of the size

of Il I.

This section presents one constrained optimization problem since it is not difficult to

convert the proofs from other sections into constrained optimization proofs. It should be

noted that these types of problems are not particularly interesting as realistic optimization

problems that might be encountered in practice. They are presented because they have the

best sizing ratios of all of the restricted problems studied, and may offer the best hope to

extend approximation results using adversary arguments or other information theoretic

techniques. The problem presented in this section is called CMAX SATf(n). A formal

definition appears below.
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DEFINITION CMAX SAT(n), Let p, and (p2 be boolean formulas in CNF format

where 1(p21 f(kJpll). Output the maximum number of clauses in T2 that

can be simultaneously satisfied by any witness o that satisfies all

clauses in (p,.

CLAIM 3.4.1 CMAX SATn(i-e) requires 1-' log n queries unless P=NP.
2

PROOF Reduce CMAX SATn(1-c ) to C 2-LEX(1 _)1 g n as follows. Let qp be an 0

instance of C2-LEX(I.E)IOg U. For each distinguished variable xi in

{xl,'",x(1-)og d of T create a group of 2 i' 1 singleton clauses

consisting of a conjunction of i copies of the variable xi. Let (p2 be this 0

collection of clauses, and let (p, be 4p. We now have

(1-e)log n - 1

19 21 X2 i =n ( I €)- 1
i=O

Since 921 : < I9qll - , 1P21 - f(p 1I) is satisfied.0

3.5 A-OPTIMIZATIONS

A-optimizations consist of two NP optimization problems I'[ and '2 where I2 is an

extension of 1 . The objective is to compute the optimization on both problems

separately, and output their difference. This has the effect of determining the degree to

which the extension was able to affect the optimal value. As with constrained optimizations 0

there is generally a relation between ri I and 12 that limits the size of 1-2 as a function of

the size of lI.

0
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Formally, a A-optimization requires that Am = Jim, - m211 = f(ml). Where m, and m 2

measure the problem sizes. If the relation f between the problem sizes is polynomial the

degree will be placed as an exponent on the A in the problem name. For example A2 -If

indicates a problem with a quadratic size disparity.

All problems in this section are reduced to a problem called C2-MLEXf(n) defined

below.

DEFINITION 3.5.1 C2-MLEXf(n), Let p be a boolean formula in CNF format where

I91 < n2 where n is the number of variables. Output the LEX max

lowest f(n) bits of any witness that satisfies c clauses where c is the

most clauses that can be simultaneously satisfied by any witness.

CLAIM 3.5.2 C2-MLEXogq.j requires login - 1 queries unless P=NP.

PROOF Recall that C2-LEXIog n requires login queries unless P=NP. Create

OTM M, to solve C2-LEXogJn using OTM M 2 that solves C2_

MLEXIog ./. M, will simply run M2 and make one additional query to

see of (p is satisfiable. If so it outputs the answer from M2 , if not it

outputs 0 to indicate an illegal p. Thus M2 was able to muster log4 n - 1

queries.0

Query bounds on C2-MLEXogqn can now be used to show query bounds for A116-

MAX SAT defined below.

DEFINITION 3-5.3 A116 -MAX SAT, Let ( 1 and (2 be boolean formulas in CNF format

where 902 is an extension of (p, and, p21 - kqplI = 641(pli" Independently
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compute the maximum number of clauses simultaneously satisfiable in

(p, and %, and output the difference.

CLAIM 3.5.4 A116 -MAX SAT requires log64[pql - 1 queries unless P=NP.

PROOF Let (p' be an instance of C2-MLEXogJ,. Let 4p be (p' padded with

enough variables so that Iqpj = n2 exactly. Let (p, and 92 be defined as

follows

nn 1 2 4 2ea

(P1 = ((P)' (P2 = (P)(XI) I (X2) (X3) ... (X lon)

We now have 19(21 - -qpjj 
= 6 pl4jl[, and the problem requires log(pl91 )-I

queries.0

The methods presented above can also be applied against C2-LEX(_,)to,,0 to prove A 16-

CLIQ, A"/6-MIS, A/ 6-VC require log6dIV - 1 queries unless P=NP, where IVI is the

number of vertices in the graph.
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4 APPROXIMATION BOUNDS

The error bound proofs of Section 2 can now be applied to the query bounds of Section

3 to get absolute and relative error bounds. Applying the theorems directly yields strong

error bounds for 1/2-approximations on many restricted NP optimization problems.

Ideally, one would like to be able to extend these error bounds to unrestricted problems.

Efforts to extend these bounds under this CRP have met with mixed results. Strong 1/2-

approximation error bounds have been extended for several problems, however closer

inspection revealed that these bounds could be attained by other methods. Efforts to extend

k-approximation bounds to problems for which there is no known bound (such as MAX

CLIQUE, and MIS) have not been successful. It has, however, been possible to extend

-- approximation results to these problems.
11

The remainder of this section is arranged as follows. First 1/2-approximation error

bounds are presented by direct use of the theorems of Section 2. An example is then given

to show how these error bounds might be extended to unrestricted problems. The section
1

concludes with -L -approximation results extended for MAX SAT.

4.1 1/2-APPROXIMATION RESULTS FOR RESTRICTED OPTIMIZATIONS

CLAIM 4.1.1 All bounded optimization problems I[ presented in Section 3.3, have

Approxi > 3/2opt 1 for over-approximations and Approxri < 1/2 optl-

for under-approxmations unless P=NP.
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PROOF All problems in Section 3.3 have query requirements that exactly match

the maximum number of bits required for output. The results then

follow from Corollaries 2.4 and 2.5.0

CLAIM 4.1.2 All A-optimization problems rI presented in Section 3.4, have •

Approxri> 5/4opt 1 for over-approximations and Approx 1 < 3/4opt 1 for

under-approximations unless P=NP.

PROOF All problems in Section 3.4 have query requirements that differ from

the maximum number of bits required for output by an additive constant

of 1. The results then follow from corollaries 2.4 and 2.5.0

4.2 EXTENDING k-APPROXIMATION RESULTS TO UNRESTRICTED
OPTIMIZATION PROBLEMS

This section presents a method for extending the error bounds from bounded

optimization problems to unrestricted versions. 1/2-approximation bounds are presented

for the unrestricted optimization problems KERNEL, and MINIMUM EXACT

COVERING. The 1/2-approximation results on many bounded optimization problems can

be extended by fairly simple constructions. Unfortunately, the extensions found to date

can also be proven by other methods, and the query analysis technique has not been

required. Problems for which there are no known error bound appear to be more difficult

to analyze and may require more powerful techniques than are presented here. Formal

definitions of the KERNEL and MINIMUM EXACT COVERING problems appear below.

DEFINITION 4.2.1 Kernel of a graph, Let G = (V,A) be a directed graph. The graph

kernel is a subset of vertices V'of V such that for any vertex u V-V'
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there is a vertex ve V such that the directed edge (v,u)e A. Also, for all

vertices viVje V' , the edges (vi,v j) or (vj,v i) do not appear in A.

DEFINITION 4.2.2 KERNEL, Let G = (V,A) be a directed graph. Output the size of the

largest kernel of G.

DEFINITION 4.2.3 Exact set covering, Let S be a set, and let C={C1 C2 ,...,C.1 be a

set of subsets over S. An exact covering of S is a subset

C'={Ca,Cb,... ,Cz of C such that all elements of S appear once and

only once in some subset Ci contained in C'.

DEFINITION 4.2.4 MINIMUM EXACT COVER (MEC) , Let S be a set,

C=[C'C2, ... ,Cn) be a set of subsets over S. Output the size of the

smallest exact covering of S.

The KERNEL, and MINIMUM EXACT COVER problems defined above have

straightforward bounded versions defined below. Both of these problems can easily be

proven to have no 1/2-approximations using the methods of Section 2, and 3.

DEFINITION 4.2.5 BKERNELf(fVl), Let G = (V,A) be a directed graph, and V' be a set

of distinguished vertices such that IV' = f(IV). Output the largest (or

smallest) number of distinguished vertices in any kernel of G.

DEFINITION 4.2.6 BOUNDED OPTIMAL EXACT COVERf(n) (BOECf(n)), Let S be

a set, C={C1 ,C2,.... ,C.} be a set of subsets over S, and C' a subset of

C such that IC' = f(ICI). Output the largest (or smallest) number of

distinguished sets in C' in any exact covering of S.

37



1/2-approximation bounds can now be proven for KERNEL and MEC by extending the

1/2-approximation results for BKERNEL and BOEC. The proof works by assuming that

there exists a 1/2-approximation algorithm for the unrestricted version, and then using this

algorithm to build a polynomial-time 1/2-approximation algorithm for the bounded version.

Since the bounded version has no such approximation unless P=NP, then the unrestricted

version also has none unless P=NP. The formal proof for BKERNEL is presented below.

A similar proof can be made for BOEC, and many other bounded optimization problems.

THEOREM 4.2.7 If KERNEL has a polynomial-time 1/2-approximation, then so

does BKERNELf(IVD for any polynomial f.

PROOF Let G be an instance of BKERNELf(IVI). Use the 1/2-approximation

algorithm for KERNEL to build a polynomial-time approximation

algorithm for BKERNELf(,VD as follows. Let f be of the form Nln for

some fixed k. Create a new graph G' from G by attaching a "plume" of
2

2nk dummy vertices (where n is the number of vertices in G) to each

distinguished vertex as shown in figure 4.2.1 below. •

dummy vertices

distinguished vertex

Figure 4.3.1 •
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We now use the algorithm to find the minimal kernel of G'. Notice that
2

if a distinguished vertex in G' is not included in the kernel, then nk of

the dummy vertices in the plume are included. Since this is more than

the total number of vertices in G, this has the effect of minimizing the

number of distinguished vertices in the minimal kernel of G'. The total

number of vertices y in the minimal kernel of G' will then be
2

p(nk + 1)+q, where p is the minimal number of distinguished vertices

from G, and q is the total number of non-distinguished vertices from

G. Let be a 1/2-approximation of y, to get a 1/2-approximation of
2

BKERNEL,(IvD we divide by nk + 1. The q term drops out and we

are left with a 1/2-approximation to BKERNELf(jv).0

4.3 EXTENDING (1/nk)-APPROXIMATION RESULTS TO
UNRESTRICTED OPTIMIZATION PROBLEMS

The k-approximation results of Section 4.1 can be extended to yield -L -approximation

bounds (for some fixed k) unless P=NP. These results are weak since the error bound is a

function of the problem size. This does, however, yield some useful information since

there are several known algorithms that allow approximations of this form [Me84]. The

proof follows lines similar to the k-approximation extensions of Section 4.2.

The -L -approximation bounds can be established by one of several methods. The first

method is to establish query requirements for the unrestricted problem without trying to

match the solution bit requirements. Applying Theorem 2.2 or 2.3 directly can then yield
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0
the result. Using this method it is possible to show -- -approximation results for the

2 ,n

unrestricted MAX SAT problem.

The second method is to develop k-approximation bounds for the A-optimization version

of the problem and show how to construct an approximation algorithm for the A- 0

optimization from an approximation algorithm for the unrestricted optimization. The result

is a proof along the lines of that presented in Theorem 4.2.6. An example of this second

method will be shown below using the query requirements for A116-MAX SAT presented 0

in Theorem 3.4.2. It should be noted that these weak bounds were established using query

requirements for C2 -LEXo 54qu. Stronger results can be established when query

requirements for C2 -LEX(l.E)Iog n are used. 0

THEOREM 4 3.1 MAX SAT has no polynomial-time - approximation algorithm

PROOF Recall that Theorem 4.1.2 established that A116-MAX SAT has no 1/4-

approximation unless P=NP. We use a 1-- approximation for

unrestricted MAX SAT to construct a 1/4-approximation for A 16-MAX

SAT as follows. Approximate MAX SAT for both 4p, and cP2

independently. Since (p2 is an extension of (p, we are assured that the

difference in these two values will be within l/4 optA16_MAX SAT. Since

A"16-MAX SAT has no 1/4-approximation unless P=NP, we conclude

that MAX SAT has no ' - approximation .0
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4.4 EXTENDING e-APPROXIMATION RESULTS TO UNRESTRICTED
OPTIMIZATION PROBLEMS

Ideally, one would like to extend true e-approximation results to unrestricted problems.

Several proofs have been constructed under this CRP similar to those for extending k-

approximation results in Section 4.2. But unfortunately, all proofs constructed to date can

be proven by other means. Problems such as CLIQUE, and MAXIMUM

INDEPENDENT SET have no known approximation bounds, and continue to resist all

but -L -approximation bounds as shown in Section 4.4.

It may be possible to use some alternate technique such as adversary arguments, or

some other information theoretic techniques to coaxe true k-approximate or e-approximate

bounds from these problems, but this is not known.
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S CONCLUSION

This paper presents a new method for bounding the accuracy attainable by a polynomial-

time approximation to certain classes of NP-Complete optimization problems.

1 approximation bounds are presented for several restricted optimization problems, while

-i--approximation bounds are presented for several unrestricted problems. The method is

based on precisely counting the number of queries required to solve the problem on a pNP

oracle machine, and comparing it to the maximum number of bits that could be required to

represent a solution. The approximation bounds rely on an underlying asumption that

certain complexity classes do not coincide, such as P*NP, NP*RP, etc, so that the

approximation bounds hold unless the assumption does not hold. The "strength" of the

approximation results depends upon the strength of the assumption used in the

construction.

In this paper all proofs are based on the assumption that P-NP. Using this assumption

several restricted NP optimization problems in graph theory and combinatorics are proven

to have no polynomial-time approximations that guarantee accuracy to better than 1/2 of

optimal. Due to the nature of the underlying assumption P*NP the optimizations are

generally restricted so that only some subset of the instance elements may participate in the

optimization. For vertex and edge problems this subset was restricted to be at most O(3 n)

of the total vertices in the graph. For the coloring problem this restraint was reduced to

O(4 n) of the total vertices in the graph. It appears that these constraints can be further

loosened either by basing the proofs on a less stringent assumption such as NP*RP, or by

finding more "efficient" reductions.
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Methods are also shown to get k-approximation and -L -approximation results for

unrestricted NP optimization problems. Unfortunately, all k-approximation results found

under this CRP can be shown by other means, but the -L -approximation results can be

shown for problems that had no previously known error bounds. These results are weak 0

since the error bound is a function of the problem size.

It may be possible to strengthen the error results for these unrestricted problems using

adversary arguments or information theoretic techniques. This would be a significant

result. Consider the Weighted Max Independent Set (WMIS) problem. It is currently

known that the unconstrained optimization version of this problem either has an F- 0

approximation, or has no k-approximation at all, but it is an open question which one

holds. Showing that uncontrained WMIS has no k-approximation below some k would

establish that the related problem MAX MIS has no E-approximation at all and hence no k- 0

approximation. This would be a very strong result. A similar new result may be possible

for the unconstrained CLIQUE problem.
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